Trajectory Generation on Approach & Landing for a Rlv Using Noc Approach
نویسندگان
چکیده
A major objective of next generation reusable launch vehicle (RLV) programs includes significant improvements in vehicle safety, reliability, and operational costs. In this paper, trajectory generation on approach/landing (A&L) for RLVs using motion primitives (MPs) and neighboring optimal control (NOC) is discussed. The proposed trajectory generation approach at A&L phase is based on an MP scheme which consists of trims and maneuvers. From an initial point to a given touchdown point, all feasible trajectories that satisfy certain constraints are generated and saved into a trajectory database. An optimal trajectory can then be found off-line by using Dijkstra’s algorithm. After perturbations are imposed on the initial states of the off-line optimal trajectory, it is reshaped into a neighboring feasible trajectory on-line by using NOC approach. At this point, a neighboring feasible trajectory existence theorem (NFTET) is investigated and its proof is provided as well. The results show that the vehicle with stuck effectors can be recovered from failures in real time. Finally, robustness issues on NOC approach are briefly discussed.
منابع مشابه
Vision-based Landing Site Evaluation and Trajectory Generation Toward Rooftop Landing
Autonomous landing is an essential function for micro air vehicles (MAVs) for many scenarios. We pursue an active perception strategy that enables MAVs with limited onboard sensing and processing capabilities to concurrently assess feasible rooftop landing sites with a vision-based perception system while generating trajectories that balance continued landing site assessment and the requirement...
متن کاملMinimum-Landing-Error Powered-Descent Guidance for Mars Landing Using Convex Optimization
To increase the science return of future missions toMars and to enable sample return missions, the accuracy with which a lander can be delivered to the Martian surface must be improved by orders of magnitude. The prior work developed a convex-optimization-based minimum-fuel powered-descent guidance algorithm. In this paper, this convex-optimization-based approach is extended to handle the casew...
متن کاملLattice Boltzmann simulation of EGM and solid particle trajectory due to conjugate natural convection
The purpose of this paper is to investigate the EGM method and the behavior of a solid particle suspended in a twodimensional rectangular cavity due to conjugate natural convection. A thermal lattice Boltzmann BGK model is implemented to simulate the two dimensional natural convection and the particle phase was modeled using the Lagrangian–Lagrangian approach where the solid particles are treat...
متن کاملAn Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload
In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...
متن کاملOptimal Online Path Planning for Approach and Landing Guidance
A method for solving finite-horizon optimal control of nonlinear systems has been developed in this paper and used for an online path planning problem. The new controller synthesis is motivated by the state-dependent Riccati equation (SDRE) technique that was developed for solving regulator and tracking problems. However, finite-time problems need to meet specified boundary conditions for the a...
متن کامل